DEVELOPMENT OF NONSTEADY FREE
CONVECTION UNDER THE ACTION OF
MOVING VERTICAL PLATES

R. N. Dzhana and N. Data UDC 536.25

The effect of free convection on the tangential stress of a vertical heated plate when the plate
is suddenly introduced into the motion and its temperature is changed is considered.

In [1-4] the nonsteady free convection around an infinite vertical motionless heated plate was investi-
gated, for different initial and boundary conditions. In [1, 2] the problem was solved on the basis of similarity
transformations, and in [3, 4] a Laplace transformation was used. In [5] the problem of free-convection os-
cillatory motion about a vertical uniformly moving plate was considered.

Below, the free convection about a vertical heated plate is investigated in the case when the plate veloc-
ity and temperature change.

Consider the motion of a viscous incompressible liquid in the semi-infinite region y > 0 bounded by a
rigid vertical wall (at y = 0), which begins to move in its plane at a velocity uyF(r) at time t = 0. The plate
_ temperature changes suddenly from T, to T, + TyG(T). Since the fluid motion is due to the parallel dis-

placement of the plate, the initial system of equations is written in the form

du 02u
- = T—T bt 1
o gb( o) + v oy (1)
O o 9T (2)
ot ay?
Introducing the dimensionless variables
N = yu/v, uy=ulty, T=ugtl, 0=(T—T)Te (3)
Eqgs. (1) and (2) may be rewritten in the form
4 g4 T )
(44 o2
00 1 o
o= (5)
ot g On?

The initial and boundary conditions are taken to be
u;=0=0 for 10,

u1=F(T), 9=G(T) for’ n=0, T>0! (6)
-0, 80 for N—>o00, T>0. (7)

Applying a Laplace transformation to Eqs. (4) and (5) and using Eq. (6), the result obtained is

*
_%2'71:% — pui = — Gro*, ®)
%*
=, (9)

where
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uf = { 4y (M, T)exp (— pt) drand 0% = f 8(n, v) exp (— pr)dt (p>0). (10)
0 .0

The boundary conditions in Eq. (7) for the function in Eq. (10) are transformed as follows

uT:F*, g* = G* for n—_—(),

(11)
uf-—>0, 0*—>0 for n— oo,
The solution of Eqgs. (9) and (8) with the boundary conditions in Eq. (11) takes the form
0* = G* exp (— V po ), (12)
— G* — —
uy = F* exp(—V pn) -+ p((}cr y 1exP (—V ) —exp(—V pon)l (65 1), (13)
— Gr G* - 14
ug = F* exp (— V) = {,E exp (— V) (o=1). (14)
Applying the inverse transformation to Egs. (12)~(14) gives
0= VONT G —ya—expi— on2/an) dh, (15)
2/ w OY
U = —_ j F (1t — A) A exp (— n2/4h) dh - Gr 5 Glt—MX

2Vay c—14 (18)

xlerfc (/2¢ A) — erfc (Von/2 VA dh  (o5%1),

= Gry 7 -
Uy = —= ( F (v — 1) A" Pexp (—n?/4h) dh + 5 i [ G —ma™ Pexp(—nyaydr (o= 1) (17)
2V Ty V/ Ty

The expressions for ¢ and u, obtained may be used to analyze various cases of initial conditions.

Example 1

The plate velocity and temperature change in a steplike manner. In this case, F(7) = G(1) = H(1), where

no={} 5o a9
Substituting these expressions for F(7) and G(7) into Egs. (15)-(17) gives [6]
8 = H (1) ierfc(V o), (19)
w— H [t erfe @ — | peric)— peric (/5 J ] (6, (20)
uy = H (v) [ierfe(§) + 21 Grierfc B (o = 1), (21)

where

E=mn/2 7, Perfc(z) = eric(z),
= (22)
i”erfc(z):j'i"_lerfc(t)dt (n=123, ...)

4 .
The tangential stress at the plate is determined by the expression
ouy H(x) [ 21Gr }
= 1 (23)
( an )M Vi Vet1
for all o. Hence it is evident that the tangential stress at the plate increases with rise in 1 or Gr, and falls

with increase in the Prandtl number ¢. It is interesting to note that the tangential stress at the wall vanishes
at 7 = 7y, where

T =Vo+ 1/2Gr (24)

for all o. It is clear from Eq. (24) that the time of flux breakaway after the beginning of the motion decreases
with rise in Gr and increases with rise in the Prandtl number g,
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Example 2

The plate begins to move in a steplike manner, and its temperature increases instantaneously, Here
F(7) =H(71) and G(T1) =TH(T). For these values of F(7) and G(7), Egs. (15)-(17) give

8 — H (1) [i® erfc(y/ 08) — 2t /ot erfc (V oB)], (25)
. 16Gr 2 |, ) -
ug = H{t)|i%erfc®) ————l-—{z‘* erfe (8) — 4 erfc (y ag)}l (o 5% 1), (26)
0' —
uy = H (7) {i®erfc (§) 4 8Gr %t erfc (§)] (0 = 1). (27)
The tangential stress at the plate is determined by the expression
du,y ) H(7) [ 1 412Gr ]
1 =t | — 1
( o Jn=o VT | 3(Vo+ ) (28)
for all o. In this case, the time 7, at which the tangential stress vanishes at the plate is defined by the rela-
tion '
3 172
v () , (29)

for all o, where 7, is found from Eq, (25).

Example 3

The plate begins to move with instantaneous acceleration, while its temperature changes in a steplike
manner. Here F(r) =tH(1), G(T) = H(71). In this case, § and u; are determined as

8 — H (1) i erfe (V ob), (30)
4 . . -
uy = vH (1) [ exfc &) — 2i erfe ) + GE‘I {erfc @) — Perfe (VoB)) (0 1), (31)
u, = tH (v) [i®erfc &) + 2(Gr — 1) Ei erfc §)] (o = 1). (32)
The tangential stress at the plate is determined in this case as

ouy ) ( T )‘/2 [ Gr ]
-1 =2H(7) | — — 14— 33
(671 n=0 o n Vo+1 (33)

for all o. 1t is interesting to note that the tangential stress at the plate vanishes when

Gr=yo+ L (34)

In this case the flux breaks away immediately after the plate begins to move.

Example 4

The plate begins to move with instantaneous acceleration, while its temperature rises instantaneously.
Here F(7) =TH(T), G(7) =T7H(7), and Egs. (15)-(17) give the result

'8 = vH (v) [i® erfc (1 k) — 2/ oti erfc (V oB)], (35)
uy, = tH (1) [i" erfc ) — 2 erfe (§) — EG—P;— {i%erfc ) — i*erfc (VEE)}] (o= 1), _ (36)
uy = tH () [0 erfc () — 2&i erfc (§) -+ 8Gr it eric ()] (o = 1). (37)
The tangential stress at the plate is

aul) ' 21“)(1 )1/2[ | 9Gr v ]

(671 1=0 O = 30/ 6+ 1) (38)
for all ¢. In this case, the tangential stress at the plate vanishes for a time 7, given by
4

Ty = —3'— Ty (39)

for all o, with 7, as in Eq. (24).
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It is evident from Egs. (23), (29), (33), and (38) that the tangential stress at the plate increases with
rise in T and Gr and decreases with rise in ¢. It is also seen that in the first, second, and fourth cases the
flux breaks away after a certain time which depends on the Prandtl and Grashof numbers.

NOTATION

Gr, Grashof number gS8T, V/ug; g, acceleration due to gravity; T, fluid temperature; T, plate tempera~
ture for t < 0; Ty, change in plate temperature for t = 0; t, time; u, fluid velocity in the x direction; ug
change in plate velocity for t = 0; uy, dimensionless velocity (u/uo); y, normal coordinate; «, thermal con-
ductivity; B, thermal expansion coefficient; 1, dimensionless coordinate (y'uO/ ¥); 0, dimensionless tempera~
ture (T — Tg)/ T,; v, kinematic viscosity; ¢, Prandtl number (v/a); 7, dimensionless time (u%t/v).
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CALCULATION OF THE HEATING OF
POLYDISPERSE PARTICLES IN A GAS

Yu. A. Popov UDC 536.244

The problem of the heating of polydisperse particles in a gas is solved with allowance for the
temperature field inside a particle and the variation of the gas temperature.

At the time t = 0 let an adiabatically closed volume of gas with a temperature T(0) be uniformly filled
with homogeneous, polydisperse, spherical particles having a temperature T;,. The problem consists in de-
termining the average temperatures of the particles and the gas at any time, The energy equation is written
in the form

dT ° noar
- 4 f 2 - P — 1
P 7 + “Cppp”oévf(fi)[év’ 5 d"]dfx 0. (1)
The temperature of the particles is determined from the heat-conduction equation
oT » 2
5 Ve

We choose the initial temperature of the particles as the origin of the temperature frame, and then the initial
and boundary conditions take the form

Tpt =0)=0;
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